Abstract
The Antarctic hairgrass (Deschampsia antarctica É. Desv.) is one of two flowering plants native to the Antarctic, and therefore it was intensively studied for decades. However, there is still limited information available about the content of biogenic and toxic elements in the leaves of this plant. While being an essential component of most of the terrestrial ecosystems in the maritime Antarctic, the content of nutrients like K, P, and S in the plants of D. antarctica may significantly affect soil properties, especially in such hot spots like rhizosphere and detritosphere. Moreover, the content of toxic elements and trace metals, in particular in the plant, is a principal criterion to evaluate its indicative role, whether or not D. antarctica may be used as a bioindicator to monitor the Antarctica environmental state. In this study, we report the preliminary results about the content of K, P, Ca, S, Mg, Na, Si, Fe, Zn, Al, Sr, Mn, Cu, B, Cr, Ba, V, Pb, Cd, and Co in the leaves of D. antarctica from the natural habitats of the maritime Antarctіс. Dry leaves were digested in nitric acid (closed-vessel microwave digestion). Elemental concentration was measured by ICP-OES technique. The differences within the samples taken from one location were far less notable than between the samples from different locations. Among the biogenic elements, the content of potassium was the most variable – from 12.2 mg·g-1 on Galindez Island to 28.7 mg·g-1 on the Cape Tuxen (Antarctic Peninsula). The content of trace metals also varied considerably between the samples from different locations. The results of this preliminary study suggest that due to the high content of nutrients, leaves of D. antarctica should be considered as an important precursor of soil organic matter, as well as a possible bioindicator. However, future studies are needed to confirm these preliminary results and hypotheses.
References
Bedernichek, T., Dykyy, I., Partyka, T., & Zaimenko, N. (2020). Why WRB needs a mammalic qualifier: the case of seal colony soils. Geoderma, 371. https://doi.org/10.1016/j.geoderma.2020.114369
Biersma, E. M., Torres-Díaz, C., Molina-Montenegro, M. A., Newsham, K. K., Vidal, M. A., Collado, G. A., Acuña-Rodríguez, I. S., Ballesteros, G. I., Figueroa, C. C., Goodall-Copestake, W. P., Leppe, M. A., Cuba-Díaz, M., Valladares, M. A., Pertierra, L. R., & Convey, P. (2020). Multiple late-Pleistocene colonisation events of the Antarctic pearlwort Colobanthus quitensis (Caryophyllaceae) reveal the recent arrival of native Antarctic vascular flora. Journal of Biogeography 00, 1-11, https://doi.org/10.1111/jbi.13843
Boelhouwers, J., Meiklejohn, I., Holness, S., & Hedding, D. (2008). Geology, geomorphology and climate change: land-sea interactions in a changing ecosystem. In S. Chown, P. W. Froneman (Eds.), The Prince Edward Islands: land-sea interactions in a changing ecosystem (pp. 65–96). Sun Press.
Chiapella, J. (2007). A molecular phylogenetic study of Deschampsia (Poaceae: Aveneae) inferred from nuclear ITS and plastid trnL sequence data: Support for the recognition of Avenella and Vahlodea. Taxon, 56(1), 55–64. https://doi.org/ 10.2307/25065735
Chwedorzewska, K. J., Giełwanowska, I., & Szczuka, E. (2008). High anatomical and low genetic diversity in Deschampsia antarctica Desv. from King George Island, the Antarctic. Polish Polar Research, 29(4), 377–386.
Cuba-Díaz, M., Rivera-Mora, C., Navarrete, E. & Klagges, M. (2020). Advances of native and non-native Antarctic species to in vitro conservation: improvement of disinfection protocols. Scientific Reports, 10, 3845. https://doi.org/10.1038/s41598-020-60533-1
Fabiszewski, J., & Wojtun, B. (2000). Chemical composition of some dominating plants in the maritime antarctic tundra (King George Island). Bibliotheca Lichenologica, 75(75), 79–91.
Fasanella, M., Premoli, A. C., Urdampilleta, J. D., González, M. L., & Chiapella, J. O. (2017). How did a grass reach Antarctica? The Patagonian connection of Deschampsia antarctica (Poaceae). Botanical Journal of the Linnean Society, 185(4), 511–524. https://doi.org/10.1093/botlinnean/box070
Fernando, D. R., & Lynch, J. P. (2015). Manganese phytotoxicity: new light on an old problem. Annals of Botany, 116(3), 313–319. https://doi.org/10.1093/aob/mcv111
Fowbert, J. A., & Lewis Smith, R. I. (1994). Rapid population increases in native vascular plants in the Argentine Islands, Antarctic Peninsula. Arctic and Alpine Research, 26(3), 290–296. https://doi.org/10.2307/1551941
Gidekel, M., Destefano-Beltrán, L., García, P., Mujica, L., Leal, P., Cuba, M., Fuentes, L., Bravo, L. A., Corcuera, L. J., Alberdi, M., Concha, I., & Gutiérrez, A. (2003). Identification and characterization of three novel cold acclimation-responsive genes from the extremophile hair grass Deschampsia antarctica Desv. Extremophiles 7, 459–469. https://doi.org/10.1007/s00792-003-0345-4
Hansen, T. H., De Bang, T. C., Laursen, K. H., Pedas, P., Husted, S., & Schjoerring, J. K. (2013). Multi-element plant tissue analysis using ICP spectrometry. Methods in Molecular Biology, 953, 121–141. https://doi.org/10.1007/978-1-62703-152-3_8
Höhne, H., Fiedler, H. J., & Ilgen, G. (1981). Untersuchungen über den Mineralstoffgehalt von Deschampsia flexuosa (L.) P. B. als Bestandteil von Fichtenforst-Ökosystement. Flora, 171(3), 199–215. https://doi.org/10.1016/s0367-2530(17)31267-7
Jankowski, K., Malinowska, E., Ciepiela, G. A., Jankowska, J., Wiśniewska-Kadżajan, B., & Sosnowski, J. (2019). Lead and cadmium content in grass growing near an expressway. Archives of Environmental Contamination and Toxicology, 76(1), 66–75. https://doi.org/10.1007/s00244-018-0565-3
Juchnowicz-Bierbasz, M., & Rakusa-Suszczewski, S. (2002). Nutrients and cations content in soil solutions from the present and abandoned penguin rookeries (Antarctica, King George Island). Polish Journal of Ecology, 50(1), 79–91.
Nuzhyna, N., Parnikoza, I., Poronnik, O., Kozeretska, I., & Kunakh, V. (2019). Anatomical variations of Deschampsia antarctica É. Desv. Plants from distant Antarctic regions, in vitro culture, and in relations to Deschampsia caespitosa (L.) P. Beauv. Polish Polar Research, 40(4), 361–383. https://doi.org/10.24425/ppr.2019.130903
Ozheredova, I. P., Parnikoza, I. Y., Poronnik, O. O., Kozeretska, I. A., Demidov, S. V., & Kunakh, V. A. (2015). Mechanisms of antarctic vascular plant adaptation to abiotic environmental factors. Cytology and Genetics, 49(2), 139–145. https://doi.org/10.3103/S0095452715020085
Park, J. H., Day, T. A., Strauss, S., & Ruhland, C. T. (2007). Biogeochemical pools and fluxes of carbon and nitrogen in a maritime tundra near penguin colonies along the Antarctic Peninsula. Polar Biology, 30(2), 199–207. https://doi.org/10.1007/s00300-006-0173-y
Parnikoza, I. (2019). Ecological mechanisms of Antarctic hairgrass (Deschampsia antarctica É. Desv.) adaptation in Antarctic climate change conditions (Doctoral dissertation). Kyiv: Institute of Molecular Biology and Genetics of the NAS of Ukraine. Retrieved from http://scc.univ.kiev.ua/upload/iblock/f8d/dis_Parnikoza%20I.Yu..pdf
Parnikoza, I., Abakumov, E., Korsun, S., Klymenko, I., Netsyk, M., Kudinova, A., & Kozeretska, I. (2016). Soils of the Argentine Islands, Antarctica: Diversity and characteristics. Polarforschung, 86(2), 83–96. https://doi.org/10.2312/polarforschung.86.2.83
Parnikoza, I., Kozeretska, I., & Kunakh, V. (2011). Vascular plants of the maritime Antarctic: Origin and adaptation. American Journal of Plant Sciences, 2(3), 381–395. https://doi.org/10.4236/ajps.2011.23044
Walton, D. W. H., & Smith, R. I. L. (1979). The chemical composition of South Georgian vegetation. British Antarctic Survey Bulletin, 49, 117–135.
Wu, S., Feng, X., & Wittmeier, A. (1997). Microwave digestion of plant and grain reference materials in nitric acid or a mixture of nitric acid and hydrogen peroxide for the determination of multi-elements by inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 12(8), 797–806. https://doi.org/10.1039/a607217h

This work is licensed under a Creative Commons Attribution 4.0 International License.

