Biometric characteristics of fruits and leaves of Cornus officinalis Siebold et Zucc. genotypes in the M.M. Gryshko National Botanical Garden of the NAS of Ukraine
PDF

Keywords

Cornus officinalis
hybrid
introduction
biometrics
fruit
leaf

How to Cite

Klymenko, S., & Ilyinska, A. (2020). Biometric characteristics of fruits and leaves of Cornus officinalis Siebold et Zucc. genotypes in the M.M. Gryshko National Botanical Garden of the NAS of Ukraine. Plant Introduction, (85/86), 25-40. https://doi.org/10.46341/PI2020006

Abstract

In the context of global climate change, the current strategy of agroeconomics focuses on the introduction of unique plant species and the selection of new commercially important cultivars adapted to the dramatic weather changes. Cornus officinalis (Cornaceae) has Chinese origin, its reintroduction at the M.M. Gryshko National Botanical Garden, National Academy of Sciences of Ukraine started in 1993.

The objectives of this research were: to investigate the biometric parameters of fruits and leaves of C. officinalis genotypes, C. officinalis × C. mas hybrid ‘Etude’ and genotype from the grafting C. officinalis on C. mas under cultivation in the M.M. Gryshko National Botanical Garden, National Academy of Sciences of Ukraine, and to determine the degree of adaptation of C. officinalis to the climatic conditions of Ukraine (in particular, Right-Bank Forest Steppe) for selection of promising genotypes for further breeding work.

Material and methods. We used: a) 26-year-old maternal plant obtained from a two-year-old seedling in 1993 received from the nursery “Northwoods Wholesale Nursery” Mollala (Oregon, USA), where it was grown as an ornamental plant; b) seedlings of the maternal plant; c) cultivar Etude, which is an artificial hybrid from crossing C. officinalis × C. mas; and d) genotype obtained from grafting C. officinalis on C. mas. In our experiment, the maternal plant is indicated as G-01, while other plants – as G-02–G-08 genotypes. We determined the biometric parameters of the fruit (length, diameter, and weight), endocarp (length, diameter, and weight), pedicel (length and thickness), leaf blade (length, width, and the number of lateral veins) and petiole (length, width, and thickness). We examined the dynamics of fruit and endocarp formation during the season (genotypes G-01–G-03 and G-05) and compared the biometric characteristics of the fruit of genotypes G-01–G-05 from crops of two years, 2010 and 2018, which were most favorable in weather conditions. We have processed quantitative data in the PAST 2.10 software. The differences between the samples were estimated using the Tukey-Kramer test. The degree of variability was determined by the coefficient of variation. To assess the level of variability, we used the classification of Mamaev (1975).

Results. We have found that the largest fruits in 2010 were observed in the genotype G-01 and the smallest – in the genotype G-03. The coefficient of variation of the linear parameters of the fruit and endocarp was in the range 5.7–10.1 %; the level of variability was very low or low. The variability of fruit weight and endocarp was high; the coefficient of variation was from 7.0 up to 28.3 %. The amplitude of the linear parameters of the leaf was wide (coefficient of variation was from 9.8 to 31.0 %). The cultivar Etude differed from other C. officinalis genotypes in size and weight of (M = 1800 mg, max = 2400 mg) and a much wider amplitude of variation in the length (17.9–22.6 vs. 14.3–18.2 mm) of the fruit. The largest leaves were in the genotypes G-08 and G-01, and the smallest – in the genotype G-02. The cultivar Etude did not differ so much by the mean leaf morphometric indices and number of veins, but it demonstrated one of the broadest leaf blades (51.5 mm).

Conclusions. The data obtained in this study is important for the commercial use of C. officinalis and the cultivar Etude as food and medicinal plant, as well as for breeding in climatic conditions of Ukraine and analysis of hybridization features in the genus Cornus in general.

https://doi.org/10.46341/PI2020006
PDF

References

Atkinson, B. A., Stockey, R. A., & Rothwell, G. W. (2016). Cretaceous origin of dogwoods: an anatomically preserved Cornus (Cornaceae) fruit from the Campanian of Vancouver Island. PeerJ, 4, e2808. https://doi.org/10.7717/peerj.2808

Brindza, P., Brindza, J., Tóth, D., Klimenko, S. V., & Grigorieva, O. (2007). Slovakian cornelian cherry (Cornus mas L.): Potential for cultivation. In Proceedings of the XXVII International Horticultural Congress – IHC2006: II International Symposium on Plant Genetic Resources of Horticultural Crops. Acta Horticulturae, 760, 433–437. https://doi.org/10.17660/actahortic.2007.760.59

Call, A., Sun, Y.-X., Yu, Y., Pearman, P. B., Thomas, D. T., Trigiano, R. N., Carbone I., & Xiang, Q.-Y. J. (2015). Genetic structure and post-glacial expansion of Cornus florida L. (Cornaceae): integrative evidence from phylogeography, population demographic history, and species distribution modeling. Journal of Systematics and Evolution, 54(2), 136–151. https://doi.org/10.1111/jse.12171

Cao, B., Bai, C., Zhang, L., Li, G., & Mao, M. (2016). Modeling habitat distribution of Cornus officinalis with Maxent modeling and fuzzy logics in China. Journal of Plant Ecology, 9(6), 742–751. https://doi.org/10.1093/jpe/rtw009

Ceccarelli, S., Grando, S., Maatougui, M., Michael, M., Slash, M., Haghparast, R., Rahmanian, M., Taheri, A., Al-Yassin A., Benbelkacem, A., Labdi, M., Mimoun, H., & Nachit, M. (2010). Plant breeding and climate changes. The Journal of Agricultural Science, 148(6), 627–637. https://doi.org/10.1017/s0021859610000651

Cornescu, F. C., & Cosmulescu, S. N. (2017). Morphological and biochemical characteristics of fruits of different cornelian cherry (Cornus mas L.) genotypes from spontaneous flora. Notulae Scientia Biologicae, 9(4), 577–581. https://doi.org/10.15835/nsb9410161

Crossa, J., Pérez-Rodríguez, P., Cuevas, J., Montesinos-López, O., Jarquín, D., de los Campos, G., Burgueño, J., González-Camacho. J. M., Pérez-Elizalde, S., Beyene, Y., Dreisigacker, S. Singh, R., Zhang X., Gowda, M., Roorkiwal, M., Jarquín, D., Rutkoski, J., & Varshney R. K. (2017). Genomic selection in plant breeding: Methods, models, and perspectives. Trends in Plant Science, 22(11), 961–975. https://doi.org/10.1016/j.tplants.2017.08.011

Czerwińska, M. E., & Melzig, M. F. (2018). Cornus mas and Cornus officinalis – coincidences and differences of two medicinal plants traditionally used. Frontiers in Pharmacology, 9(894), 1–28. https://doi.org/10.3389/fphar.2018.00894

Dinda, B., Kyriakopoulos, A. M., Dinda, S., Zoumpourlis, V., Thomaidis, N. S., Velegraki, A., Markopoulos, C., & Dinda, M. (2016). Cornus mas L. (cornelian cherry), an important European and Asian traditional food and medicine: Ethnomedicine, phytochemistry and pharmacology for its commercial utilization in drug industry. Journal of Ethnopharmacology, 193, 670–690. https://doi.org/10.1016/j.jep.2016.09.042

Eyde, R. H. (1988). Comprehending Cornus: Puzzles and progress in the systematics of the dogwood. The Botanical Review (Lancaster), 54(3), 233–351. https://doi.org/10.1007/bf02868985

Feng, C. M., Xiang, Q. Y., & Franks, R. G. (2011). Phylogeny-based developmental analyses illuminate evolution of inflorescence architectures in dogwoods (Cornus s.l., Cornaceae). New Phytologist, 191(3), 850–869. https://doi.org/10.1111/j.1469-8137.2011.03716.x

Ferguson, I. K. (1966). The Cornaceae of the southeastern United States. Journal of the Arnold Arboretum, 47(2), 106–116.

Fileccia, T., Guadagni, M., Hovhera, V., & Bernoux, M. (2014). Ukraine – Soil fertility to strengthen climate resilience: Preliminary assessment of the potential benefits of conservation agriculture: Main report (English). Washington, DC: World Bank Group. Retrieved from http://documents.worldbank.org/curated/en/755621468319486733/Main-report

Fodor, S. S. (1974). Flora of Transcarpathia. Kyiv: Vyscha Shkola. (In Ukrainian).

Fu, C. N., Li, H. T., Milne, R., Zhang, T., Ma, P. F., Yang, J., Li, D. Z., & Gao, L. M. (2017). Comparative analyses of plastid genomes from fourteen Cornales species: inferences for phylogenetic relationships and genome evolution. BMC Genomics, 1(1), 956. https://doi.org/10.1186/s12864-017-4319-9

Gawrońska, B., Morozowska, M., Nuc, K., Kosiński, P., & Słomski, R. (2019). What nature separated, and human joined together: About a spontaneous hybridization between two allopatric dogwood species (Cornus controversa and C. alternifolia). PLOS One, 14(12), e0226985. https://doi.org/10.1371/journal.pone.0226985

Grygorieva, O., Abrahamová, V., Karnatovská, M., Bleha, R., & Brindza, J. (2014). Morphological characteristic of fruit, drupes and seeds genotypes of Ziziphus jujuba Mill. Potravinarstvo: Slovak Journal of Food Sciences, 8(1), 306–314. https://doi.org/10.5219/414

Grygorieva, O., Klymenko, S., Ilinska, A., & Brindza, J. (2018a). Variation of fruits morphometric parameters of Elaeagnus multiflora Thunb. germplasm collection. Potravinárstvo: Slovak Journal of Food Sciences, 12(1), 527–532. https://doi.org/10.5219/922

Grygorieva, O., Klymenko, S., Vergun, O., Hudz, N., Nikolaieva, N., Schubertová, Z., Palamarchuk, O., & Brindza, J. (2017). Morphological characteristics and determination of volatile organic compounds of Diospyros virginiana L. genotypes fruits. Potravinarstvo: Slovak Journal of Food Sciences, 11(1), 612–622. https://doi.org/10.5219/808

Grygorieva, O., Klymenko, S., Vinogradova, Y., Vergun, O., & Brindza, J. (2018b). Variation in morphometric traits of fruits of Mespilus germanica L. Potravinarstvo: Slovak Journal of Food Sciences, 12(1), 782–788. https://doi.org/10.5219/999

Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 01. Retrieved from http://palaeo-electronica.org/2001_1/past/issue1_01.htm

Holubkova, I. M. (2017). Morphological features of Persica species and varieties in the Forest-Steppe of Ukraine. Plant Varieties Studying and Protection, 13(1), 64–70. (In Ukrainian). https://doi.org/10.21498/2518-1017.13.1.2017.97307

Hosseinpour-Jaghdani, F., Shomali, T., Gholipour-Shahraki, S., Rahimi-Madiseh, M., & Rafieian-Kopaei, M. (2017). Cornus mas: A review on traditional uses and pharmacological properties. Journal of Complementary and Integrative Medicine, 14(3), 20160137. https://doi.org/10.1515/jcim-2016-0137

Huang, J., Zhang, Y., Dong, L., Gao, Q., Yin, L., Quan, H., Chen, R., Fu, X., & Lin, D. (2018). Ethnopharmacology, phytochemistry, and pharmacology of Cornus officinalis Sieb. et Zucc. Journal of Ethnopharmacology, 213, 280–301. https://doi.org/10.1016/j.jep.2017.11.010

Hutchinson, J. (1942). Neglected generic characters in the family Cornaceae. Annals of Botany, 6(21), 83–93. https://doi.org/10.1093/oxfordjournals.aob.a088402

Jaćimović, V., & Božović, Ð. (2017). Evaluation of cornelian cherry (Cornus mas L.) varieties and selections under the conditions of Gornje Polimlje region. Voćarstvo, 51(199/200), 81–86.

Ji, L. L., Wang, X., Li, J. J., Zhong, X. J., Zhang, B., Juan, J., & Shang, X. Y. (2019). New iridoid derivatives from the fruits of Cornus officinalis and their neuroprotective activities. Molecules, 24(3), 625. https://doi.org/10.3390/molecules24030625

Kazimierski, M., Regula, J., & Molska, M. (2019). Cornelian cherry (Cornus mas L.) – characteristics, nutritional and pro-health properties. Acta Scientiarum Polonorum Technologia Alimentaria, 18(1), 5–12. https://doi.org/10.17306/j.afs.0628

Kleopov, Y. D. (1990). Analysis of the flora of the broadleaved forests in the European part of the USSR. Kyiv: Naukova Dumka. (In Russian)

Klimenko, S. (2004). The cornelian cherry (Cornus mas L.): Collection, preservation, and utilization of genetic resources. Journal of Fruit and Ornamental Plant Research, 12, 93–98.

Klymenko, S., & Klymenko, O. (2017). Leaf anatomy of the members of Cornaceae family in conditions of the Forest-Steppe of Ukraine. Annals of the Romanian Society for Cell Biology, 21(2), 28–39.

Klymenko, S., Grygorieva, O., & Brindza, J. (2017a). Less known species of fruit crops. Slovak University of Agriculture in Nitra. https://doi.org/10.15414/2017.fe-9788055217659

Klymenko, S., Grygorieva, O., & Onyshuk, L. (2017b). Biological bases of seed and vegetative reproduction of cornelian cherry (Cornus mas L.) in nature and culture. Agrobiodiversity for Improving Nutrition, Health and Quality, 1, 233–248. http://dx.doi.org/10.15414/agrobiodiversity.2017.2585-8246.233-248

Klymenko, S., Grygorieva, O., Vasiuk, E., & Skrуpchenko, N. (2017c). Bioecological and morphological features, adaptive selection of species Castanea sativa Mill., Cornus officinalis Sieb. et Zucc., Pseudocydonia sinensis C.K. Schneid., Ziziphus jujuba Mill., Viburnum opulus L., Crataegus spp. In D. B. Rakhmetov (Ed.), Adaptation of introduced plants in Ukraine (pp. 221–311). Kyiv: Phytosotsiocenter. (In Ukrainian)

Klymenko, S., Kucharska, A. Z., Sokół-Łętowska, A., & Piórecki, N. (2019). Antioxidant activities and phenolic compounds in fruits of cultivars of cornelian cherry (Cornus mas L.). Agrobiodiversity for Improving Nutrition, Health and Life Quality, 3, 484–499. Retrieved from https://agrobiodiversity.uniag.sk/scientificpapers/article/view/306

Krośniak, M., Gąstoł, M., Szałkowski, M., Zagrodzki, P., & Derwisz, M. (2010). Cornelian cherry (Cornus mas L.) juices as a source of minerals in human diet. Journal of Toxicology and Environmental Health, Part A, 73(17–18), 1155–1158. https://doi.org/10.1080/15287394.2010.491408

Kryvoruchko, O. V., & Kryvoruchko E. V. (2018). Phenolic compounds of Cornus mas and Cornus officinalis. Ukrainian Biopharmaceutical Journal, 1(54), 42–45. (In Ukrainian). https://doi.org/10.24959/ubphj.18.151

Li, G. S., Zhang, L. J., & Bai, C. K. (2012). Chinese Cornus officinalis: TGenetic resources, genetic diversity and core collection. Genetic Resources and Crop Evolution, 59(8), 1659–1671. https://doi.org/10.1007/s10722-011-9789-z

Li, X., Ma, Q., Zhou, H., Yang, Y., Li, H., & Wang J. (2020). Characterization of the complete chloroplast genome of Cornus bretschneideri (Cornaceae). Mitochondrial DNA, Part B, 5(1), 543–544. https://doi.org/10.1080/23802359.2019.1710281

Mamaev, S. A. (1975). The main principles of the methodology for the study of intraspecific variability of woody plants. In Individual and ecological-geographical variability of plants (pp. 3–14). Sverdlovsk: Ural Worker. (In Russian)

Manchester, S. R., Xiang, X. P., & Xiang, Q. Y. (2010). Fruits of cornelian cherries (Cornaceae: Cornus subg. Cornus) in the Paleocene and Eocene of the Northern Hemisphere. International Journal of Plant Sciences, 171(8), 882–891. https://doi.org/10.1086/655771

Molnar, T. J. (2018). Breeding powdery mildew resistant dogwoods and more at Rutgers University. International Plant Propagators’ Society. Combined Proceedings of Annual Meetings, 68, 385–395.

Monka, A., Grygorieva, O., Chlebo, P., & Brindza, J. (2014). Morphological and antioxidant characteristics of quince (Cydonia oblonga Mill.) and chinese quince fruit (Pseudocydonia sinensis Schneid.). Potravinarstvo: Slovak Journal of Food Sciences, 8(1), 333–340. https://doi.org/10.5219/415

Moradi, Y., Khadivi, A., & Salehi-Arjmand, H. (2019). Morphological and pomological characterizations of cornelian cherry (Cornus mas L.) to select the superior accessions. Scientia Horticulturae, 249, 208–218. https://doi.org/10.1016/j.scienta.2019.01.039

Morozowska, M., Gawronska, B., & Woznicka, A. (2013). Morphological, anatomical and genetic differentiation of Cornus mas, Cornus officinalis and their interspecific hybrid. Dendrobiology, 70, 45–57. https://doi.org/10.12657/denbio.070.005

Murrell, Z. E. (1993). Phylogenetic relationships in Cornus (Cornaceae). Systematic Botany, 18(3), 469–495. https://doi.org/10.2307/2419420

Murrell, Z. E., & Poindexter, D. B. (2016). Cornaceae Berchtold & J. Presl. In Flora of North America Editorial Committee (Eds.) Flora of North America North of Mexico, Vol. 12: Magnoliophyta: Vitaceae to Garryaceae. New York and Oxford. Retrieved from http://www.efloras.org/florataxon.aspx?flora_id=1&taxon_id=10219

Ortiz, R. (2018). Role of plant breeding to sustain food security under climate change. In S. S. Yadav, R. J. Redden, J. L. Hatfield, A. W. Ebert, & D. Hunter (Eds.), Food Security and Climate Change (pp. 145–158). John Wiley & Sons Ltd. https://doi.org/10.1002/9781119180661.ch8

Poyarkova, A. I. (1950). To the question of systematic relations within the Linnaeus genus Cornus L. In B. K. Schischkin (Ed.), Botanical materials of the Herbarium of V.L. Komarov Botanical Institute of the AS USSR, XII (pp. 164–180). Moscow & Leningrad: Publishing House of the AS of USSR. (In Russian)

Poyarkova, A. I. (1951). Cornaceae Link. In: B. K. Schischkin (Ed.), Flora of the USSR, Vol. 17 (pp. 315–348). Moscow & Leningrad: Publishing House of the AS USSR. (In Russian)

Prevéy, J. S. (2020). Climate change: Flowering time may be shifting in surprising ways. Current Biology, 30(3), 112–114. https://doi.org/10.1016/j.cub.2019.12.009

Rakhmetov, D. (2018). Non-traditional plant species for bioenergetics. Nitra: Slovak University of Agriculture in Nitra. https://doi.org/10.15414/2018.fe-9788055218557

Reed, S. M. (2004). Self-incompatibility in Cornus florida. HortScience, 39(2), 335–338. https://doi.org/10.21273/HORTSCI.39.2.335

Royer, D. L., McElwain, J. C., Adams, J. M., & Wilf, P. (2008). Sensitivity of leaf size and shape to climate within Acer rubrum and Quercus kelloggii. New Phytologist, 179(3), 808–817. https://doi.org/10.1111/j.1469-8137.2008.02496.x

Schneider, S. H. (2004). Abrupt non-linear climate change, irreversibility and surprise. Global Environmental Change, 14(3), 245–258. https://doi.org/10.1016/j.gloenvcha.2004.04.008

Shindell, D. (2007). Estimating the potential for twenty-first century sudden climate change. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1860), 2675–2694. https://doi.org/10.1098/rsta.2007.2088

Stockey, R. A., Nishida, H., & Atkinson, B. A. (2016). Anatomically preserved fossil cornalean fruits from the Upper Cretaceous of Hokkaido: Eydeia hokkaidoensis gen. et sp. nov. American Journal of Botany, 103(9), 1642–1656. https://doi.org/10.3732/ajb.1600151

Szot, I., Lipa, T., & Sosnowska, B. (2019). Evaluation of yield and fruit quality of several ecotypes of cornelian cherry (Cornus mas L.) in polish condiotions. Acta Scientiarum Polonorum Hortorum Cultus, 18(6), 139–148. https://doi.org/10.24326/asphc.2019.6.14

Takhtajan, A. L. (1987). The system of magnoliophytes. Moscow: Nauka. (In Russian)

Taunk, J., Rani, A., Singh, R., Yadav, N. R., & Yadav, R. C. (2019). Genomic strategies for improving abiotic stress tolerance in crop plants. In V. Rajpal, D. Sehgal, A. Kumar, S. Raina (Eds.), Genetic enhancement of crops for tolerance to abiotic stress: Mechanisms and approaches. Vol. I (pp. 205–230). Springer. https://doi.org/10.1007/978-3-319-91956-0_9

Wagner, W. H. (1990). A natural hybrid of gray dogwood, Cornus racemosa, and round-leaved dogwood, C. rugosa, from Michigan. The Michigan Botanist, 29(4), 131–137.

Wangerin, W. (1910). Cornaceae. In: A. Engler (Ed.), Das Pflanzenreich, Ser. IV, Fam. 229 (Heft 41). Leipzig: W. Engelmann.

Weaver, R. E. (1976). The cornelian cherries. Arnoldia, 36(2), 50–56.

Woźnicka, A., Melosik, I., & Morozowska, M. (2015). Quantitative and qualitative differences in morphological traits of endocarps revealed between Cornus L. species. Plant Systematics and Evolution, 301(1), 291–308. https://doi.org/10.1007/s00606-014-1073-1

Xiang, J. Q.-Y., & Boufford, D. E. (2005). Cornaceae. In Z. Y. Wu, & P. H. Raven (Eds.), Flora of China, Vol. 14 (Apiaceae through Ericaceae) (pp. 206–221). Beijing: Science Press and St. Louis: Missouri Botanical Garden Press.

Xiang, Q. Y. J., Thomas, D. T., Zhang, W., Manchester, S. R., & Murrell, Z. (2006). Species level phylogeny of the genus Cornus (Cornaceae) based on molecular and morphological evidence – implications for taxonomy and Tertiary intercontinental migration. Taxon, 55(1), 9–30. https://doi.org/10.2307/25065525

Yu, Y., Xiang, Q. Y., Manos, P. S., Soltis, D. E., Soltis, P. S., Song, B. H., Cheng, S. F., Liu, X., & Wong, G. (2017). Whole-genome duplication and molecular evolution in Cornus L. (Cornaceae) – insights from transcriptome sequences. PLOS One, 12, e0171361. https://doi.org/10.1371/journal.pone.0171361

Yue, X., Li, X., Chen, X., Ashraf, M. A., Liu, Z., Bi, H., Zheng, D., Zhao, Y., & Peng, W. (2018). Molecules and functions of Cornus officinalis bark volatiles. Emirates Journal of Food & Agriculture, 30(10), 828–838. https://doi.org/10.9755/ejfa.2018.v30.i10.1826

Zhang, J., Franks, R. G., Liu, X., Kang, M., Keebler, J. E., Schaff, J. E., Huang, H. W., & Xiang, Q. Y. J. (2013). De novo sequencing, characterization, and comparison of inflorescence transcriptomes of Cornus canadensis and C. florida (Cornaceae). PLOS One, 8, e82674. https://doi.org/10.1371/journal.pone.0082674

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.